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SUMMARY 

A series of large-scale dynamic tests was conducted on a passively-controlled five-story 

steel building on the E-Defense shaking table facility in Japan to accumulate knowledge 

of realistic seismic behavior of passively-controlled structures.  The specimen was 

tested by repeatedly inserting and replacing each of four damper types, i.e., the buckling 

restrained braces (BRBs), viscous dampers, oil dampers and viscoelastic dampers.   

Finally, the bare steel moment frame was tested after removing all dampers.  A variety 

of excitations was applied to the specimen, including white noise, various levels of 

seismic motion, and shaker excitation.  System identification was implemented to 

extract dynamic properties of the specimen from the recorded floor acceleration data.  

Damping characteristics of the specimen were identified.  In addition, simplified 

estimations of the supplemental damping ratios provided by added dampers were 

presented to provide insight into understanding the damping characteristics of the 

specimen.  It is shown that damping ratios for the specimen equipped with 

velocity-dependent dampers decreased obviously with the increasing order of modes, 

exhibiting frequency dependency.  Damping ratios for the specimen equipped with oil 

and viscoelastic dampers remained constant regardless of vibration amplitudes, while 

those for the specimen equipped with viscous dampers increased obviously with an 

increase in vibration amplitudes because of the viscosity nonlinearity of the dampers.  

In very small-amplitude vibrations viscous and oil dampers provided much lower 

supplemental damping than the standard, whereas viscoelastic dampers could be very 

efficient. 

Keywords: system identification; passively-controlled structure; velocity-dependent 

damper; damping; shaking table test 

1. Introduction 

When subjected to severe earthquakes, conventional earthquake-resistant structures are 

intended to achieve reasonable behavior by use of the ductility of structural members.  

However, the development of ductility could produce damage, and a structure might 

suffer collapse if the location and extent of the damage are not well-controlled.  Even 

if the buildings survive a collapse, inspection and repair of the damage after an 
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earthquake often require high costs and long disruptions, which is not acceptable in 

modern society.  One solution that can preserve the safety of occupants and provide the 

promise of minimizing the disruptions and the cost of repairs following major 

earthquakes is to add response-controlled devices in structure systems.  Because 

response-controlled devices can be effective in reducing drift and acceleration responses, 

the damage to structural and nonstructural components are limited or eliminated [1]. 

Response-controlled devices can be divided into three categories: active, semi-active 

and passive devices [2].  Because passively-controlled devices operate robustly and 

have no requirements for external power supplies, actuators, sensors, or computers, the 

implementation of this category of devices has outdistanced significantly the 

implementation of others.  Passively-controlled devices include hysteretic dampers, 

velocity-dependent dampers, and others.  The steel buckling-restrained braces (BRBs) 

are considered a typical example of hysteretic dampers in Japan.  They dissipate 

earthquake-induced energy through hysteretic loops after the yielding of steel.  

Examples of velocity-dependent dampers include the dampers that use viscoelastic solid 

materials (e.g., viscoelastic dampers) and the dampers that are operated by forcing fluid 

through an orifice (e.g., viscous and oil dampers). 

Extensive experimental studies have been conducted [2], including tests of various 

passively-controlled devices and of small-scale passively-controlled structural models.  

Analytical models have been developed for passively-controlled devices, and design 

provisions and guidelines have also been developed for the passively-controlled 

building structures [3,4].  Widespread practical applications can be found in strong 

earthquake-prone regions.  Japan is believed to have the largest number of 

passively-controlled buildings, most of which were constructed after the 1995 Kobe 

earthquake.  Nevertheless, because of their brief history, none of the modern 

passively-controlled buildings has experienced very large shaking.  It is thus extremely 

important to examine realistic earthquake behavior of such structural systems by using 

large-scale dynamic tests. 

To this end, a full-scale five-story steel building specimen equipped with 

commonly-used dampers was tested dynamically using the E-Defense shaking table 

facility in Japan [5,6].  The specimen had concrete floor slabs and nonstructural 

components such as curtain walls, partition walls, drywell walls, ceilings, and stairs.  

To understand the dynamic properties of the specimen, a variety of excitations was 

applied, including white noise, various levels of seismic motion, and shaker excitation.  

The specimen was heavily instrumented with more than 1350 channels of sensors, and a 

large volume of test data was recorded. 

Using analyses of the test data, the objective of this paper is to identify the damping 

characteristics of the specimen equipped with velocity-dependent dampers.  In the first 

section, the shaking table tests are reported and the responses of the specimen are 

briefly described.  The second section presents the system identification for extracting 

dynamic properties, and illuminates the damping characteristics of the specimen, e.g., 

the vibration frequency-dependency and amplitude-dependency.  In the third section, 

simplified estimations of the supplemental damping ratios offered by the added dampers 

are presented, and the estimated results are correlated with the test results by system 

identification. 
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2. Full-Scale Shaking Table Tests 

2.1. Test specimen 
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Figure 1. Test specimen: (a) specimen view; (b) plan view; (c) elevation Y1 and Y3 in 

transverse direction; and (d) elevation X2 in longitudinal direction. 

The National Research Institute for Earth Science and Disaster Prevention, Japan, 

conducted a series of large-scale tests on the E-Defense to examine the seismic behavior 

of passively-controlled building structures [5,6].  The five-story steel frame, 

representative of commonly used office building constructions in Japan, was selected as 

the test specimen.  As shown in Figure 1, the specimen had two bays and two spans in 

the plan.  The plan dimension was 10 m by 12 m, the total height was 16.735 m, and 

the overall weight was 4.73 MN.  Passive dampers were added in a brace fashion to 

the steel moment frame.  A total of twelve dampers were placed in the first to fourth 

stories, two dampers in the transverse direction and one damper in the longitudinal 

direction for each story.  The buckling restrained braces (BRBs) and three types of 

velocity-dependent dampers (i.e., the viscous, oil, and viscoelastic dampers) were 

adopted.  In the test specimen, the velocity-dependent dampers were incorporated with 

steel bracing members to form “damper braces”.  The specimen was tested by 

repeatedly inserting and replacing each of the damper types following the sequence of 
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the BRBs, viscous, oil and viscoelastic dampers, and finally the bare steel moment 

frame was tested after removing all dampers.  The BRBs were tested first, because 

they had higher strength and stiffness than other dampers, ensuring ease and safety 

during the transportation of the specimen from its construction site to the shaking table.  

After that viscous dampers were tested, because numerical prediction of their behavior 

was involved in an E-Defense Blind Analysis Contest [7].  Oil dampers were tested 

third, because they were supposedly able to offer more supplemental damping than 

viscoelastic dampers, ensuring minimal damage to the specimen when subjected to large 

motions.  Because the objective of this paper is to identify the damping characteristics 

of a specimen equipped with velocity-dependent dampers, the loading and 

corresponding responses of the specimen equipped with the BRBs will not be described 

in the following discussion. 

The bare steel moment frame was designed to have a fundamental period of 

approximately 0.05 times the building height, and the capacities and distribution of the 

dampers were determined so that the story drift angle did not exceed 0.005 under the 

Level-2 earthquake (the design basis earthquake), according to the Japanese Manual for 

Design and Construction of Passively-Controlled Buildings [4].  The preliminary 

time-history analysis indicated that the specimen equipped with dampers would 

experience a maximum drift angle not greater than 0.01 when subjected to the 100% 

Takatori motion, and the steel frame would be almost elastic without damage.  Note 

that the Takatori motion is a ground motion recorded at JR Takatori station in the south 

of Hyogo prefecture, Japan, during the 1995 Kobe earthquake.  The Takatori motion 

has a peak ground velocity (PGV) equal to 1.27 m/s, approximately 2.5 times the PGV 

of the Japanese Level-2 earthquake [8].  All beams had a wide-flange section of 400 

mm deep, and all columns had a square tube section of 350 mm wide.  Beam ends 

were intentionally strengthened by the attachment of a pair of wing plates at the top and 

bottom flanges, in order to elongate the elastic drift angle of the steel frame up to 0.01.  

The nominal yield steel strengths were 325 and 295 MPa for the beams and columns, 

respectively.  Steel beams were in contact and acted compositely with concrete slabs 

via shear studs.  The beams were connected to the columns using a fully welded 

connection detail.  The specimen was securely anchored to the shaking table through a 

stiff foundation beam by tensioned anchor bolts.  The fundamental period of the bare 

steel moment frame was estimated to be 0.74 and 0.79 s in the transverse and 

longitudinal directions, respectively. 

Nonstructural components were installed in the specimen.  Glass curtain walls and 

autoclaved lightweight concrete (ALC) panels were placed on the exterior frames in the 

first and second stories, drywall partitions were placed on the interior frames in the 

second through fifth stories, and ceilings were installed in the fourth and fifth stories.  

More details on the specimen can be found in [5,6]. 

The specimen was loaded on the E-Defense shaking table, which has a plan 

dimension of 15 m by 20 m and can accommodate a specimen up to a weight of 12 MN 

[9,10].  The specimen was heavily instrumented with a total of over 1350 channels of 

sensors.  On each floor, four tridirectional servo accelerometers measured floor 

accelerations.  Displacement transducers and strain gauges were installed to measure 

the story drifts, deformations of elements, and axial forces of damper braces. 
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2.2. Excitations 

Figure 2 shows the test program.  Three types of excitations were adopted in the tests: 

the Takatori motion, white noise motion, and shaker excitation.  To examine the 

dynamic behavior of the test specimen at various earthquake intensities, a series of the 

Takatori motions that were scaled to multiple levels were applied to the specimen in an 

increasing sequence.  To examine the dynamic properties of the specimen for different 

states, the white noise motion and shaker excitation were applied to the specimen for 

three times (i.e., before the 15% Takatori, after 50% Takatori, and after 100% Takatori).  

The white noise motion was applied to the specimen by the shaking table, while the 

shaker excitation was applied by a pair of shakers that were installed on the roof.  The 

amplitudes of structural responses were different for these types of excitations.  The 

peak roof acceleration responses had the order of around 1.0, 0.1, and 0.01 g under the 

Takatori motion, white noise, and shaker excitation, respectively.  It is notable that the 

level of acceleration response at building top is in the order of 1 g under earthquake 

motions and in the order of 10-3 g under ambient vibrations.  Note that the scales 

shown in Figure 2 were used for the passively-controlled specimen, and the scales of 20, 

30, 40, 50, and 70% were adopted for the bare steel moment frame. 
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 Figure 2. Test program: Takatori motion sequence, and white noise motion and 

shaker excitation for three times 

Figure 3 plots the acceleration history of the Takatori motion and the acceleration 

response spectra associated with a variety of damping ratios from 0.02 to 0.2. 
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Figure 3. Takatori motion input: (a) acceleration histories; and (b) acceleration response 

spectra in transverse direction 

2.3. Seismic response of specimen 

Figure 4 shows the maximum story drift angles of the specimen when subjected to the 

Takatori motion.  The maximum story drift angles occurred in the second story.  

Because of the addition of damping and stiffness provided by the dampers, the 

passively-controlled specimen had remarkably smaller story drift angles relative to the 
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bare steel moment frame.  The maximum story drift angles for the passively-controlled 

specimen were less than 0.007 in the transverse direction under the 100% Takatori 

motion.  The bare steel moment frame experienced a maximum story drift angle more 

than 0.01 in the transverse direction under the 70% Takatori motion.  The 

passively-controlled specimen showed similar responses in the longitudinal direction as 

those in the transverse direction.  More details on the seismic responses of the 

specimen can be found in Reference [6]. 
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Figure 4. Maximum story drift angles of specimen in transverse direction 

Slight damage was observed after the tests.  For both the passively-controlled 

specimen and bare steel moment frame, cracking was found in concrete floor slabs, 

ALC panels and drywall partitions after the 100% Takatori motion loading.  The 

recorded strain data indicated that several beam ends and column bases yielded slightly.  

Nevertheless, the entire structure remained nearly elastic [6]. 

3. System Identification and Dynamic Properties of the Specimen 

Dynamic properties of the test specimen, including natural frequencies, modal damping 

ratios and mode shapes, were extracted from the recorded table and floor acceleration 

data.  The accelerometers had a measurement range of ±100 m/s2 and a resolution of 

9.8×10-6 m/s2, and the A/D converter had a 24-bit resolution.  The sampling rates were 

500, 1000, and 200 Hz for the excitations of white noise, Takatori motion, and shaker, 

respectively.  Note that only the vibration characteristics for the transverse direction 

are provided in the following discussion.  The vibration characteristics for the 

longitudinal direction were estimated as well, and the conclusions were similar to those 

for the transverse direction. 

3.1. System identification using white noise data 

A commonly used frequency-domain system identification algorithm, the frequency 

response function (FRF) method, was applied to the data recorded in the white noise 

excitation (called “white noise data” hereinafter).  The white noise was input to the 

shaking table to induce low-level vibration of the specimen with a maximum story drift 

angle of less than 0.12%.  The white noise used for the passively-controlled specimen 

had an auto-spectrum that was uniform over the frequency bandwidth of 0.2 to 35 Hz, a 

root mean square (RMS) amplitude of around 0.6 m/s2, and a duration of 250 s.  The 

white noise applied to the bare steel moment frame was reduced to a RMS amplitude of 
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0.36 m/s2 in order to induce a similar level of vibrations as the passively-controlled 

specimen.  The FRFs were calculated as the quotient of the auto-spectra of response 

data over the cross-spectra of excitation and response data, where the spectra were 

calculated using Welch’s method [11].  The natural frequencies were identified by 

peak picking of FRFs, the damping ratios of respective modes were estimated by using 

the half-power bandwidth method, and the mode shapes were obtained by fitting the 

FRFs curves [11]. 

A basic controller, the three-variable controller (TVC) [12], was used to generate the 

white noise to the E-Defense shaking table, and an advanced controller, the input 

reference modification (IRM) [12] controller, was used to generate the Takatori motion.  

Since the TVC had less efficiency in suppressing the table’s unwanted pitching motion 

that was caused by the inertia effect of the specimen, the pitching occurred in 

conjunction with the translational motion in the white noise excitation.  The pitching 

motion could produce a significant increase in the apparent damping ratios, particularly 

for the lower modes.  A methodology proposed in Reference [13] was used to 

eliminate the effect of table’s pitching on the system identification. 

The estimated dynamic properties at various states were found to be nearly identical.  

As an example, Figure 5 shows the estimated natural frequencies and mode shapes of 

the specimen after tests.  After the Takatori motion, the natural frequencies decreased 

by less than 1.8% on the average of the first five modes relative to the undamaged status.  

The modal assurance criterion (MAC) index for associated mode shapes [14], which 

ranges between 0 and 1, was adopted to estimate the changes in mode shapes.  An 

index value close to 1 indicates that two modes shapes are nearly identical.  The 

average MAC of mode shapes before and after the Takatori motion was not less than 

0.996.  The very small changes in dynamic properties indicate that the specimen 

remained nearly elastic during the loading and that the damage was rather slight. 
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Figure 5. Natural frequencies and mode shapes of specimen identified from white 

noise data 

Figure 5 indicates that the natural frequencies of the specimen equipped with three 

types of velocity-dependent dampers were similar.  Because the velocity-dependant 

dampers could offer the addition of dynamic stiffness, the natural frequencies of the 

specimen increased by 19% on the average of the first five modes relative to the bare 

steel moment frame. 

Figure 6 shows the estimated damping ratios of the specimen.  For the bare steel 
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moment frame, damping ratios of the first five modes were around 0.01.  When the 

supplemental damping was provided by added dampers, the passively-controlled 

specimen had larger damping ratios than the bare steel moment frame.  The damping 

ratio of the first mode increased to 0.055, 0.18 and 0.098 when the specimen was 

equipped with viscous, oil and viscoelastic dampers, respectively. 
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Figure 6. Damping ratios of specimen identified from white noise data 

Figure 6 also indicates that the bare steel moment frame had nearly constant 

damping ratios regardless of the order of modes.  However, damping ratios of the 

specimen equipped with velocity-dependent dampers decreased along with the 

increasing order of modes, exhibiting obvious frequency dependency.  As will be 

demonstrated in Section 4, this was attributed to the inherent properties of the dampers. 

In addition, another system identification method, named the autoregressive with 

exogenous term (ARX) method, was used for the white noise data.  Details of the ARX 

method will be described in the next subsection.  The results identified by the ARX 

method showed good agreement with those identified by the FRF method.  The 

differences in the estimated values between the two methods were 0.3% (for frequencies) 

and 11% (for damping ratios) on the average. 

3.2. System identification using Takatori data 

Because the Takatori motion has non-flat distribution in frequency domain and a short 

duration, the time-domain system identification methodology, more efficient to cope 

with non-stationary signals, was used to analyze the data recorded in the Takatori 

motion excitation (called “Takatori data” hereinafter).  A commonly used time-domain 

algorithm, the ARX method, was adopted. 

The ARX model is a time-series model that can represent a dynamic system in a 

discrete time domain.  The coefficient matrices of the ARX model were determined by 

a least square estimation of all sampling data of the system’s input and output.  The 

system matrix of the structure was constructed from the coefficient matrices of the ARX 

model, and then the dynamic properties of the structure were estimated from the 

eigenvalue decomposition of the system matrix.  Details of the ARX model used for 

system identification can be found in [15,16]. 

A key to the success of the ARX method is the selection of a reasonable order for 

the ARX model.  A stabilization diagram, as shown in Figure 7, was used to determine 

the order of the ARX model for the bare steel moment frame under the 40% Takatori 

motion.  This stabilization means that the relative differences of the dynamic 

properties identified using two adjacent ARX model orders are less than 1, 10, and 5% 



9 

for the natural frequencies, damping ratios and MAC index of mode shapes, respectively.  

From Figure 7, an ARX model order of 42 was found necessary to achieve stable modes.  

Another index, modal phase collinearity (MPC) [17], was used to distinguish actual 

modes from spurious ones that were an artifact of the computation.  The MPC index 

for an actual structural mode is close to unity, and a cutoff MPC of 0.90 was selected for 

this study.  Figure 7 also plots the estimated FRF curve.  Large deviations existed in 

the FRF curve at high frequencies, indicating less accuracy of the FRF measurement.  
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Figure 7. Stabilization diagram for ARX model for bare steel moment frame under 

40% Takatori motion 

Figure 8 shows the first two natural frequencies and corresponding damping ratios 

of the specimen identified from the Takatori data.  The peak roof acceleration 

responses of the specimen are plotted as well.  Figure 8 indicates that the natural 

frequencies of the specimen remained nearly constant with increasing vibration 

amplitudes.  Damping ratios of the specimen equipped with oil and viscoelastic 

dampers remained nearly constant regardless of the variety of vibration magnitudes.  

Damping ratios of the bare steel moment frame also remained constant, except that the 

damping under the 70% Takatori motion increased due to the yield of steel during the 

loading.  Damping ratios of the specimen equipped with viscous dampers increased 

obviously along with an increase in vibration amplitudes.  The damping ratio of the 

first mode increased to double when the excitation increased from the 15% to the 100% 

Takatori motion.  As will be demonstrated later in Section 4, this was attributed to the 

viscosity nonlinearity of the viscous dampers. 
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Figure 8. Natural frequencies and damping ratios of specimen identified from Takatori data: 

(a) viscous dampers; (b) oil dampers; (c) viscoelastic dampers; and (d) bare moment frame 

3.3. System identification using shaker excitation data 

Two shakers were installed on the roof to excite the specimen.  The table was locked 

strictly during the shaker excitation.  Each shaker had an inertial weight of 25 kN, and 

could produce a maximum force up to 1.64 kN.  Because the shaker excitation force 

was much smaller relative to the total inertial weight of the specimen, the forced 

vibration responses of the specimen were rather slight.  The maximum story drift 

angles for the passively-controlled specimen were of the order of 10-5. 

Shaker excitation consisted of two phases.  In the first phase, the shakers excited 

the specimen in a sweep motion in the transverse and longitudinal directions, 

respectively.  The sweep consisted of many cycles of sinusoid wave with the 

increasing frequency from 0.2 to 8 Hz, and it had a duration of 150 s.  Accelerometers 

were installed on the shakers and on all floors to record the excitation and responses of 

the specimen.  The excitation force was estimated by the shakers’ inertial mass and its 

acceleration.  The FRFs of the specimen were estimated from the recorded excitation 

and response accelerations.  Figure 9 plots an example of the FRF measurement from 

the shakers’ acceleration to the roof acceleration for the bare steel moment frame.  

Because the frequencies of the sweep motion were less than 8 Hz, only the first two 

modes of the specimen were motivated.  The natural frequencies were determined by 

peak picking of the FRF curves, as shown in Figure 9.  A comparison of Figures 5 and 

9 indicates a good correlation for the natural frequencies identified using the white noise 

excitation and the shaker excitation. 
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Figure 9. Frequency response function (FRF) estimated using the shaker excitation 

data and the identified natural frequencies of specimen 
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Although the damping ratios could be extracted from the FRF curves, the estimated 

results might be less accurate, because the structural responses were not steady under 

the short-term sweep excitation.  Therefore, the second phase of shaker excitation was 

applied to provide a more accurate estimation of the damping ratios. The shakers 

excited the specimen with the sinusoid wave at a fixed frequency that was equal to one 

of the natural frequencies of the specimen until a steady response was reached, and then 

they were stopped suddenly to generate free vibration response decay.  Figure 10 

shows the roof acceleration response of the bare steel moment frame.  The damping 

ratio associated with the corresponding vibration mode was estimated from the envelope 

curve of the free vibration decay that followed an exponential function [18].  Note that 

five cycles of free vibration decay were used in the estimation of damping ratios for the 

bare steel moment frame and the specimen equipped with viscous dampers, whereas 

three cycles of free vibration decay were used for the specimen equipped with oil and 

viscoelastic dampers, because they showed much rapider attenuations.  
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Figure 10. Roof acceleration response under shaker excitation and identified damping 

ratios of specimen 

Comparison of Figures 6 and 10 indicates that the estimated damping ratios 

identified from the shaker excitation were close to those identified from the white noise 

data for both the bare steel moment frame and the specimen equipped with viscoelastic 

dampers.  Differences between the two results occurred due to variability of the results 

obtained from system identification, as will be demonstrated in Subsection 3.4.  

However, the damping ratios identified from the shaker excitation for the specimen 

equipped with viscous and oil dampers were much lower than those identified from the 

white noise data.  As will also be demonstrated later, the large discrepancy was beyond 

the variability associated with system identification, and was a result of the inherent 

properties of those dampers 

The fact that the viscous damper could offer very limited supplemental damping in 

extremely small-amplitude vibrations is attributed to its viscosity nonlinearity, which 

will be demonstrated in Section 4.  Reference [19] examined oil dampers that were 

very similar to those used in the test, and found that the presence of air bubbles in the 

oil would decrease the stiffness and damping of the oil dampers under very 

small-amplitude vibrations.  The oil dampers tested in this study were of the same type 

and supplied by the same manufacturer.  It was thus speculated that air bubbles were 

the source for the reduction of damping ratios observed in the shaker excitation. 

Ambient vibration and forced vibration tests are commonly used in the identification 

of dynamic properties of buildings and civil infrastructures.  In general, the ambient 
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vibration and force vibration were several orders of amplitude lower than the vibration 

induced by earthquakes.  In small-amplitude vibrations the viscoelastic damper could 

be efficient, but the viscous and oil dampers would provide much lower supplemental 

damping than their standard.  Therefore, for the passively-controlled buildings 

equipped with viscous and oil dampers, damping ratios identified by forced vibration or 

ambient vibration tests could be far lower than those in an earthquake, and they shall 

not be used in earthquake response analysis. 

3.4. Statistical Analysis for Identified Dynamic Properties 

Many sources could result in variability of the results of system identification [20].    

Therefore, statistical analysis was performed to estimate the statistics of the identified 

dynamic properties and to validate that the findings reflect the damping characteristic of 

the dampers rather than being misinterpreted by the variability of system identification. 

Natural frequencies and damping ratios of the specimen identified using the white 

noise data, Takatori data, and shaker excitation data were used for statistical analysis.  

Table I presents the statistical properties of the first two natural frequencies and 

corresponding damping ratios for the specimen equipped with oil and viscoelastic 

dampers and the bare steel moment frame.  The statistics of these parameters were 

presented by their mean values and standard deviations and confidence intervals (CIs).  

A 95% CI for a point-estimated parameter can be interpreted as an interval that is 

believed, with 95% confidence, to include the true value of the parameter, and it was 

calculated herein using the assumption that the distribution of variance is norm.  The 

standard deviations of frequencies were not greater than 2% of the corresponding mean 

values, while the standard deviations of damping ratios ranged from 5% to 19% of the 

corresponding mean values.  The identified frequencies displayed a high level of 

certainty while the identified damping ratios had more variability, which is expected and 

consistent with past studies [15, 20]. 

Table I. Statistics for identified natural frequencies and damping ratios of specimen. 

 
Order of 

mode 

Frequency (Hz) Damping ratios 

Mean 
Standard 

deviation 
95% CI Mean 

Standard 

deviation 
95% CI 

Oil damper 
1st 1.81 0.0392 1.81±0.08 0.17 0.012 0.17±0.02 

2nd 5.72 0.0405 5.72±0.08 0.082 0.0040 0.082±0.008 

Viscoelastic 

damper 

1st 1.70 0.0314 1.70±0.06 0.086 0.0055 0.086±0.011 

2nd 5.27 0.0248 5.27±0.05 0.090 0.0041 0.090±0.008 

Bare moment 

frame 

1st 1.47 0.0279 1.47±0.05 0.011 0.0020 0.011±0.004 

2nd 4.63 0.0190 4.63±0.04 0.011 0.00069 0.011±0.001 

It is notable that all identified natural frequencies and damping ratios for the 

specimen equipped with viscoelastic dampers and for bare frame fell into their 95% CIs. 

For oil dampers, the natural frequencies and damping ratios identified using the white 

noise data and Takatori data fell into their 95% CIs, while those identified by shaker 

excitation were out of their 95% CIs.  Therefore, the reduction in damping of oil 

dampers under extremely small-amplitude vibrations could be attributed to their 

inherent properties, not resulting from variability of system identification. 

For the specimen equipped with viscous dampers, the identified damping ratios 

showed a very scattered distribution along with the different amplitude vibrations.  The 
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identified damping ratios for the first mode varied from 0.020 to 0.11.  The standard 

deviations of damping ratios were close to 40% of the corresponding mean values.  

The variance of identified damping for viscous dampers significantly exceeded that for 

other dampers and bare frame, though the same system identification procedure was 

adopted.  Therefore, the large variance of estimated damping ratios was attributed 

primarily to the inherent property of viscous dampers, rather than induced by the 

variability in system identification. 

4. Simplified Estimations of Supplemental Damping Provided by Added Dampers 

To provide insight into understanding the damping characteristics of the 

passively-controlled specimen observed from system identification, this section presents 

simplified estimations of the supplemental damping ratios offered by added dampers.    

First, the analytical models for various damper braces are introduced and the parameters 

of the models are determined.  Following that, the equivalent damping ratios of 

damper braces are estimated by use of their analytical models.  Finally, the 

supplemental damping ratios provided by the added dampers are estimated by 

integrating the equivalent damping ratios for all damper braces, and the results are 

correlated with those obtained from the system identification. 

4.1. Analytical models for damper braces 

Figure 11 summarizes the configuration, materials, and analytical models for three types 

of velocity-dependent dampers.  The viscous and oil dampers belong to the fluid type, 

and their damper forces are produced by fluid resistance against flow.  The 

characteristics of these dampers are captured by a Maxwell body that consists of an 

in-series combination of spring and dashpot.  The viscous damper has a nonlinear 

dashpot whose force is a fractional power of velocity, whereas the oil damper has a 

linear dashpot whose force is proportional to velocity.  Note that the Japanese oil 

damper typically has a relief mechanism, so that the force of the damper in a velocity 

spike is controlled to avoid overloading the damper itself or the bracing system to which 

it is connected.  The viscoelastic damper is composed of acrylic material sandwiched 

between parallel steel panels.  It provides both a velocity-dependent damping force and 

a displacement-dependent elastic restoring force.  The viscoelastic damper is 

characterized in a Kelvin body that consists of an in-parallel combination of spring and 

dashpot where the internal stiffness and viscosity coefficient are the functions of 

vibration frequency [21]. 

Damper Viscous damper Oil damper Viscoelastic damper 

Configuration    

Materials used Silicone fluid Oil Acrylics 

Formulation = uCF   = uCF   ( ) ( )+= uCuKF   

Model of damper 

brace 

CdKdKb

Brace Damper  

CdKdKb

Brace Damper  

Kd(ω)
Kb

Brace Damper

Cd(ω)

 

Figure 11. Configuration of dampers and models of damper braces 
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In the test specimen, the velocity-dependent damper was incorporated with a steel 

bracing member to form a damper brace.  As shown in Figure 11, the damper brace 

could be captured by an in-series combination of a linear spring that represented the 

steel bracing member and a Maxwell body or a Kelvin body that represented the 

damper. 

In the test, four strain gauges were mounted on the end of the damper brace.  Since 

the steel bracing member remained elastic during the loadings, the stresses of steel 

could be calculated by using an assumed Young’s modulus of steel of 2.05×105 N/mm2. 

The exerted force was then calculated by multiplying the average stress by the 

cross-sectional area of the steel bracing member.  Displacement transducers were 

installed to measure the axial deformation of the damper brace.  Figure 12 plots the 

measured axial force-deformation hysteresis curves of the damper brace that was 

installed in the transverse direction in the first story under the 100% Takatori motion. 
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Figure 12. Axial force-deformation hysteresis curves under 100% Takatori motion: (a) 

viscous damper brace; (b) oil damper brace; and (c) viscoelastic damper brace 

The analytical model for the viscous damper brace yields the following equation: 
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in which F(t) and u(t) denote the axial force and deformation of the damper brace, 

respectively, Cd denotes the internal viscosity coefficient, K=Kb+Kd denotes the stiffness 

of an in-series combination of the bracing member and damper, and α denotes the 

exponent coefficient of velocity.  Herein, the value of α was taken to be 0.38, the 

number provided by the damper manufacturer.  Using the axial deformation and force 

data for damper braces, the coefficients K and Cd were determined by the least square 

estimation.  Figure 13(a) shows the estimated viscosity coefficient Cd compared with 

the nominal values provided by the manufacturer.  The estimated values were close to 

the corresponding nominal values, with a discrepancy of less than 15%. 
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Figure 13. Viscosity coefficient of dampers: (a) viscous damper; and (b) oil damper 
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Similarly, the analytical model for the oil damper brace yields the following 

equation: 

 
( ) ( )

( )tu
C

tF

K

tF



=+

d

 (2) 

The least square estimation of the measured data of axial deformations and forces of the 

oil damper braces produced their stiffness and internal viscosity coefficients.  Figure 

13(b) shows the estimated values of viscosity coefficient Cd and the corresponding 

nominal values.  The estimated values correlated well with the corresponding nominal 

values, and the discrepancy between them was less than 10%. 

The internal stiffness and viscosity coefficients for viscoelastic dampers rely on 

various factors, e.g., the material properties of acrylics, thickness and shear area of the 

viscoelastic body, vibration frequencies, and temperature [21].  Identification of these 

coefficients is beyond the scope of this paper.  Therefore, the analytical model of 

viscoelastic dampers and the estimation of supplemental damping provided by the 

viscoelastic dampers will not be presented in the following discussion. 

4.2. Equivalent damping ratio of damper braces 

The following estimates the equivalent damping ratios of the damper braces using their 

analytical models, which are the base for estimating the total supplemental damping 

provided by dampers. 

4.2.1 Viscous damper brace 

Figure 14 shows a typical hysteresis loop of a viscous damper brace subjected to a 

harmonic force   0 cosF t F t .  The damping of the damper brace can be quantified 

in term of the equivalent damping ratio, given by [18]: 

 D
eq

S0

1

4

E

E



  (3) 

in which ED denotes the energy dissipated per cycle of motion, i.e., the area enclosed by 

the hysteresis loop, and ES0 denotes the maximum strain energy in one cycle of motion.  

ED

ES0

Force

Deformation

CdK=Kb+Kd

F0cos(t)

keq

1Cequ0

u0

 
Figure 14. Typical hysteresis loop of viscous damper brace in harmonic motion 

Because the dashpot can not store strain energy, ES0 is given by: 

 2

S0 0 / 2E F K   (4) 

ED is formulated as follows: 

   
2π /

D

0

E F t u t dt



                        (5) 
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When substituting Equation (1) into Equation (5) and noting that the spring can not 

dissipate energy, one obtains: 

  
 

1
2π / π/21 1 1

1 - 1

D 0 d

d0 0

4 (cos t)
F t

E F t dt F C dt
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  
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 
   (6) 

Evaluating the integral on the right-hand-side of Equation (6) yields: 
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where Γ is the gamma function.  Substituting Equations (4) and (7) into Equation (3) 

yields: 
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 (8) 

Equation (8) indicates that the equivalent damping ratio of the viscous damper brace 

is related not only to the vibration frequency  but also to the amplitude of excitation 

force F0 unless the exponent coefficient of velocity 1  . 

The viscous damper brace installed in the transverse direction in the first story was 

selected as an example.  In the analytical model, the exponent coefficient of velocity α 

was taken as 0.38, and the values used for the stiffness coefficient K and viscosity 

coefficient Cd were indentified from the axial deformation and force data recorded in 

the 50% Takatori motion excitation.  If the amplitude of the harmonic force was fixed 

to be 400 kN, the equivalent damping ratio of the damper brace could be estimated by 

Equation (8) with the vibration frequency  as the variable.  Figure 15(a) shows the 

relationship curve between the equivalent damping ratio and vibration frequency.  The 

equivalent damping ratio of the viscous damper brace decreased obviously with an 

increase in vibration frequency. 
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Figure 15. Equivalent damping ratio of viscous damper brace: (a) equivalent damping 

ratio-vibration frequency curve; and (b) equivalent damping ratio-vibration amplitude 

curve 
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On the other hand, if the frequency of harmonic motion was fixed to be the first 

natural frequency of the specimen f1=1.77 Hz, the equivalent damping ratio could be 

estimated with the force amplitude F0 as the variable.  Figure 15(b) plots the 

relationship curve between the equivalent damping ratio and the vibration amplitude.  

It indicates that the equivalent damping ratio increased significantly with an increase in 

vibration amplitude of displacement and/or force. 

4.2.2 Oil damper brace 

The oil damper has a linear dashpot of which the exponent coefficient of velocity   

equals to unity.  Substituting 1   into Equation (8), the equivalent damping ratio of 

the oil damper brace is obtained as follows: 
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Equation (9) indicates that the equivalent damping ratio of the oil damper brace is 

inversely proportional to the vibration frequency , while it is independent on the 

vibration amplitude. 

Figure 16 shows the equivalent damping ratio of the oil damper brace installed in 

the transverse direction in the first story, which was estimated by Equation (9) with 

vibration frequency as the variable.  The values used for K and Cd were identified from 

the axial deformation and force data recorded in the 50% Takatori motion excitation.  

Figure 16 indicates that the equivalent damping ratio decreased significantly with an 

increase in vibration frequency. 
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Figure 16. Equivalent damping ratio of oil damper brace 

4.3. Supplemental damping ratios provided by added dampers 

The following presents simplified estimations of the supplemental damping ratios 

provided by dampers, which calculate the supplemental damping by integrating the 

equivalent damping ratios for all dampers.  The estimated results are compared with 

the system identification results. 

4.3.1 Specimen equipped with viscous dampers 

The supplemental damping ratios provided by added dampers can be obtained through 

integrating the damping of individual damper braces.  Assuming that the specimen 

vibrates in a harmonic motion with a frequency equal to its ith natural frequency and 

deflects proportionally to the corresponding mode shape, the supplemental damping 

ratio provided by added dampers can be calculated by [22]: 
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in which D ,

1

dn

i j

j

E


  is the total energy dissipated by the damper braces in one cycle of 

motion, EDi,j denotes the energy dissipated by the jth damper brace element, nd denotes 

the number of the damper brace elements, S0 ,

1

N

i k

k

E


  is the maximum strain energy 

stored in the entire specimen, ES0i,k denotes the maximum strain energy stored in the kth 

element in one cycle of motion, N denotes the number of the total elements, ES0i,j 

denotes the maximum strain energy stored in the jth damper brace element, and eqi,j 

denotes the equivalent damping ratio of the jth damper brace element. 

Setting the maximum deformation vector of the specimen in one cycle of motion as 

Δi=γi, where i is the ith mass-normalized mode shape and γ is a amplitude factor, the 

maximum strain energy stored in the entire specimen is given by: 
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in which K denotes the stiffness matrix of the specimen, and i denotes the ith natural 

circular frequency of the specimen. 

The maximum axial deformation of the jth damper brace element between its two 

ends is given by: 

 0 , ,i j i ju   (12) 

in which i,j denotes the axial deformation of the jth damper brace element in the ith 

mass-normalized mode shape. 

Instituting u=u0i,jsin(it) into Equation (1) yields: 
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where Fi,j(t) is the force exerted on the jth damper brace element, and the Kj and Cd,j is 

the stiffness and internal viscosity coefficient of the jth damper brace element, 

respectively.  Because there is no close-form solution for the Equation (13), the Fourth 

Order Runge–Kutta method [23] is used to obtain the approximation of the solution of 

the equation. 

Taking the peak value of Fi,j(t) in one cycle of motion as F0i,j, the maximum strain 

energy and equivalent damping ratio of the damper brace element in one cycle of 

motion can be calculated using Equations (4) and (8), respectively.  Then, the 

supplemental damping ratios can be estimated through integrating the damping of all 

damper brace elements by Equation (10). 
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The total damping ratio associated with the ith mode is given by: 

 
,d ,0i i i     (14) 

in which i,0  denotes the inherent damping ratio of the structure.  Because the system 

identification shows that the bare steel moment frame had damping ratios of about 0.01, 

i,0 was thus taken to be 0.01. 

Using the natural frequencies and mode shapes obtained from system identification, 

the damping ratios of the specimen could be estimated through the above procedure.  

Note that the deformation of the damper brace i,j could be calculated from the drift of 

the story where the damper brace was installed and the incline angle of the damper 

brace.  Figure 17(a) shows an example for the estimated damping ratio of the first 

mode with the vibration amplitude as the variable.  The RMS value of the story drift 

was used to quantify the vibration amplitude, and the average RMS value of the drifts 

for all stories was used as the horizontal axis of the plot.  Figure 17(a) indicates that 

the damping ratio of the first mode increased obviously along with the increasing 

vibration amplitude.  The damping ratios extracted by system identification were 

plotted as well.  The white noise responses and earthquake-induced responses that 

were used for system identification had different maximum drifts in various cycles of 

vibration, whereas the simplified estimations were based on the assumption of a group 

of constant-amplitude sinusoid motions.  Therefore, the damping ratios obtained from 

simplified estimations had some discrepancy with the system identification results.  

Nevertheless, a similar trend was found from these two sets of results. 
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(a) (b) 

Figure 17. Damping ratios of the specimen equipped with viscous dampers: (a) 

damping ratio-vibration frequency curve; and (b) damping ratio-vibration mode curve 

Figure 17(b) shows the estimated damping ratios associated with the five modes for 

which the vibration amplitude was set to be equal to the specimen’s response measured 

during the white noise excitation, in terms of the average RMS value of drifts for all 

stories.  The estimated damping ratios decreased obviously along with the increasing 

order of modes.  The damping ratios extracted by system identification were plotted as 

well, and the same trend could be found between the simplified estimation and system 

identification results. 

4.3.2 Specimen equipped with oil dampers 

Similarly, the damping ratio of the specimen equipped with the oil dampers can be 

estimated.  As for the oil damper brace, the Equation (13) is modified as follows: 
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A close-form solution exists for the equation, given by: 
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The peak value of Fi,j(t) in one cycle of motion equals to: 
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Substituting Equations (17) and (12) into Equation (4) yields: 
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Substituting Equations (18) and (9) into Equation (10), one obtains after some 

simplifications: 
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Equation (19) indicates that the supplemental damping ratio of the oil dampers relies 

on the vibration frequency, but does not depend on the vibration amplitude. 

Figure 18 shows the estimated damping ratios for the first five modes compared 

with the system identification results.  This indicates that the damping ratio decreased 

significantly with an increasing order of modes.  It is notable that the simplified 

estimations capture the general trend and shows a result close to that obtained from 

system identification.  
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Figure 18. Damping ratios of the specimen equipped with oil dampers 

5. Conclusions 

A series of shaking table tests was conducted to examine the seismic behavior of a 

full-scale passively-controlled five-story steel building specimen.  The specimen was 

tested by repeatedly inserting and replacing each of four damper types, and the bare 

steel moment frame was loaded after removing all dampers.  Three types of excitations 
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(i.e., the white noise, Takatori motion, and shaker excitation) were applied to the 

specimen.  System identification was implemented to extract dynamic properties of the 

specimen from the recorded data.  The damping characteristics of the specimen 

equipped with velocity-dependent dampers were identified.  Simplified estimations of 

the supplemental damping provided by added dampers were presented, and the results 

were correlated with the observations by system identification. 

The following conclusions are drawn from this study.  (1) The bare steel moment 

frame had nearly constant damping ratios of around 0.01 regardless of the vibration 

frequencies and amplitudes.  (2) Damping ratios of the specimen equipped with the 

velocity-dependent dampers decreased with the increasing order of modes, exhibiting 

obvious frequency-dependency.  (3) Damping ratios of the specimen equipped with 

viscous dampers increased significantly along with an increase in vibration amplitudes, 

due to the viscosity nonlinearity of viscous dampers.  (4) In small-amplitude vibrations, 

viscous and oil dampers provided much lower supplemental damping than their 

standards, whereas viscoelastic dampers could be very efficient. 
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